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Introduction

Generation of special quantum states of light is still under intensive research in quantum optics. An
efficient tool of quantum state engineering is based on discrete coherent-state superpositions. It has
been shown that superposition of even a small number of coherent states put along a straight line or on
a circle in phase space can approximate nonclassical field states with a high degree of accuracy [1, 2, 3].
In this communication we show that in the experimental scheme containing only beam splitters and
homodyne detectors, discrete coherent state superpositions on a line and on a lattice in phase space can
be produced with a certain degree of freedom in the coefficients. The states are prepared conditionally
depending on the measurements result of the homodyne detectors in the scheme.
We have developed a numerical method for determining the parameters of homodyne measurements
yielding a proper set of coefficients in the coherent state superposition with high fidelity. We demon-
strate that squeezed coherent, photon number, and squeezed photon number states can be approximately
prepared in the proposed scheme.

Discrete coherent-state superpositions on a line or a lattice

in phase space

A nonclassical quantum state |ψt〉 can be approximated with high fidelity by discrete coherent-state
superpositions (CSS) which consists only a few number of coherent states on a line or on a lattice in
phase space with real parameter d. The fidelity between the target and the approximating state is

F1 = |
〈

ψt
∣

∣ψapp
〉

|, (1)

where the approximating state is a superposition of coherent states
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|ci|2, (2)

where the cis are complex coefficients and αi = αi(d).
Our aim is to find the optimal coefficients cis and the parameter d which maximize the fidelity F1.

Experimental scheme I.

The experimental scheme shown in the figure below only consists of linear optical elements: beam
splitters and homodyne detectors. The state |out〉3 is prepared conditionally in travelling wave way.
Recently, it has been shown that one element of this scheme can be used for preparing Schödinger-cat
states [4, 5, 6].
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The effect of a beam splitter on coherent states can be described by the following formula
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We perform a homodyne measurement on one of the modes of the two-mode light leaving the beam
splitter, which eliminates the measured mode and introduces the following factor in the other mode
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The initial states for producing CSS on a line
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The initial states for producing CSS on a lattice
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Experimental scheme II.

The effect of the beam splitters (3) and the homodyne measurements (4) on the initial states (5)
and (6) are

|out3〉line = c1 |0〉 + c2 |−d〉
+ c3 |d〉 + c4 |2d〉 + c5 |−2d〉 ,

|out3〉lattice = c1 |−d + id〉+c2 |id〉 +c3 |d + id〉
+c4 |−d〉 +c5 |0〉 +c6 |d〉
+c7 |−d− id〉+c8 |−id〉+c9 |d− id〉 ,

,

where the ci coefficients for the line are
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where d =
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and the ai and bi coefficients are
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where A denotes the measured mode and the parameter d is the same as in the previous approximation
step. The fidelity between this output state and the approximating state in (2) is

F2 = |〈ψapp |out3〉 |. (7)

The optimal parameters x1, x2, x3 maximizing the fidelity F2 can be found numerically.

Results

• Squeezed coherent state |α = 1〉 with squeezing parameter ζ = iπ
12.

The optimal parameters of the coherent-state superposition on a line:

c1 c2 c3 c4 c5 d

0.1147 - 0.1101i -0.0152 + 0.0748i -0.6532 + 0.6535i 0.3082 + 0.1392i -0.0008 - 0.0281i 0.88

The optimal measurement parameters:

x1 x2 x3

-0.169 -1.879 0.791

The fidelity of the target and the approximating state:

F = |
〈

ψt
∣

∣ψa
〉

| = 0.965. (8)

•Approximating photon number state |n = 2〉 using discrete coherent-state superposition on a lattice:
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The optimal parameters of the coherent-state superposition on a lattice:

c1 c2 c3 c4 c5

-0.1334 - 0.3310i 0.1746 - 0.2665i 0.0771 + 0.1911i 0.0578 - 0.0108i -0.0175 + 0.0105i

c6 c7 c8 c9 d

-0.5990 + 0.1835i 0.0863 + 0.3684i 0.4168 - 0.1015i -0.0659 - 0.0297i 0.399

The optimal measurement parameters:

x1 x2 x3

-0.499 38.78 -0.003

The fidelity of the target and the approximating state:

F = |
〈

ψt
∣

∣ψa
〉

| = 0.983. (9)

• Squeezed photon number state |n = 2〉 with squeezing parameter ζ = iπ
12.

The optimal parameters of the coherent-state superposition on a lattice:

c1 c2 c3 c4 c5

-0.5056 + 0.1441i 0.0471 - 0.2596i -0.0218 - 0.0264i 0.2732 - 0.1533i -0.0001 + 0.0018i

c6 c7 c8 c9 d

0.1011 + 0.1097i 0.1892 - 0.0959i 0.3445 - 0.0038i -0.5188 + 0.3154i 0.96

The optimal measurement parameters:

x1 x2 x3

-0.747 -1.026 0.002

The fidelity of the target and the approximating state:

F = |
〈

ψt
∣

∣ψa
〉

| = 0.928. (10)

In summary, experimental scheme consisting only linear optical elements has been developed for pro-
ducing conditionally nonclassical states of light in travelling wave optics.


