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Introduction

There has been a persistent interest in the construction and the production of nonclassical states of a
harmonic oscillator system due to their potential applications in quantum optics and quantum informa-
tion processing [1, 2]. Special attention has also been devoted to the idea of quantum state engineering,
that is, to the preparation of arbitrary quantum states in the same experimental scheme [3]. An effi-
cient method of quantum state engineering is to construct nonclassical states via discrete coherent-state
superpositions. It has been shown that superpositions of even a small number of coherent states placed
along a straight line or on a circle in phase space can approximate nonclassical field states with a high
degree of accuracy [4, 5, 6]. This protocol exploits the effect of quantum interference between the con-
stituent coherent states.

Inspired by these results, we consider quantum state engineering on an ellipse and on a specific 3 × 3
equidistant lattice of distance d in phase space. We show, by using an efficient numerical optimization
method, that the superpositions of a small number of coherent states of these geometries can approxi-
mate certain nonclassical states with a high accuracy. We have optimized numerically the parameters
of the chosen geometry and the coefficients of the coherent states via a genetic algorithm [7], in order
to obtain the best feasible approximation. In this procedures we determined the misfit parameter [6]

ǫ = 1− |〈ψN |Ψ〉|2, (1)

which minimizing by optimization. The quantity |〈ψN |Ψ〉| is the form of fidelity between the approxi-
mating coherent-state superposition |ψN〉 and the target quantum state |Ψ〉. Obviously, the described
method for deriving the approximating coherent-state superpositions can only be used if a well-behaved
one-dimensional coherent-state representation of the quantum state exists.

For certain states and parameter ranges the approximation is better than the corresponding one on a
circle or along a line.

Coherent-state superpositions on an ellipse in phase space

Elliptical states can be defined as coherent-state superpositions on an ellipse in phase space

|ψN〉ellipse = N
N
∑

k=1

c
(ellipse)
k

|αk〉, (2)

where

αk = rk · eiφk, φk = φ0 +
2πk

N
,
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(

cos2 φk
a2
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b2

)
1
2

,

(3)

where a and b are arbitrary real numbers. Here the constituent coherent states are placed equidistantly
in their phase φk. Nonclassical properties of such states were analyzed only for states with constant

coefficients ck = 1 [8]. Our task is to find the set of coefficients c
(ellipse)
k

in (2) and parameters a, b of

the ellipse in (3), which minimize the misfit parameter ǫ(ellipse) in (1).

Coherent-state superpositions on a lattice in phase space

It has been shown that discrete coherent-state superpositions with variable coefficients on a lattice
in phase space can be produced in traveling wave optics using only beam splitters and homodyne
measurements [9, 10]. We consider the approximation of nonclassical states by such experimentally
realizable superpositions on a lattice in phase space.

Let us consider the superposition of 9 coherent states

|ψ9〉lattice = N
1
∑

l=−1

1
∑

k=−1

c
(lattice)
k,l

|l · d + k · id〉, (4)

on an equidistant lattice centered around the origin in phase space. In this equation N is a normal-
ization constant and d is the distance between adjacent elements of the lattice. As in the case of the

ellipse, the task is to find the optimal complex coefficients c
(lattice)
k,l

and the distance d in (4). For the

measure of the accuracy of the approximation to be optimized, we use the misfit parameter ǫ(lattice).
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Results

• The minimal misfits ǫ(ellipse) and ǫ(line) of the approximation of the squeezed number states on an
ellipse and along a line with 12 coherent states and the optimal parameters aopt, bopt of the ellipse
and dopt of the line for various photon numbers and for a constant squeezing parameter ζ = 0.5.

State ǫ(ellipse) aopt bopt ǫ(line) dopt

|0, 0.5, 0〉 6× 10−4 1.25 0.17 1.4× 10−5 0.27

|3, 0.5, 0〉 0.001 2.63 0.97 0.0015 0.47

|5, 0.5, 0〉 0.006 3.39 1.44 0.018 0.6

|7, 0.5, 0〉 0.0172 4.09 1.54 0.052 0.74

Approximating squeezed number state |5, 0.5, 0〉 by N = 12 coherent states on an ellipse (a) Wigner
functionW (α) of the approximating coherent-state superposition, (b) pins showing the positions and
the absolute values of the coefficients of the constituent coherent states.
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• For the number states we have found that high accuracy can be achieved not only at the optimal value
of d but in a range of distances around this value. The figure shows that as the photon number n
increases, the width of the acceptable range of high accuracy decreases. The lower limit of this range
shifts to the direction of larger distances while the upper limit shows a more complicated behavior,
but the accuracy of the approximation relevantly decreases for distances d > 1.7.

• The misfits ǫ(lattice) and ǫ(circle) of the approximation of number-state superpositions on a lattice
and on a circle with 9 coherent states and the optimal distances dopt and radii Ropt for increasing
number of superposed states.

State ǫ(lattice) dopt ǫ(circle) Ropt

1√
2
(|0〉 + |1〉) 2× 10−6 0.257 2.2× 10−5 0.54

1√
3
(|0〉 + |1〉 + |2〉) 1.8× 10−5 0.53 4× 10−4 0.9

1
2(|0〉 + |1〉 + |2〉 + |3〉) 6.6× 10−5 0.79 0.0016 1.17
1√
5
(|0〉 + |1〉 + |2〉 + |3〉 + |4〉) 0.0017 1.37 0.0061 1.32

1√
72
(7|0〉 + 3|1〉 + 2|2〉 + |3〉 + 3|4〉) 0.0016 1.33 0.0035 1.15

Approximating number state superposition 1√
3
(|0〉+ |1〉+ |2〉) by N = 9 coherent states on a lattice

(a) Wigner function W (α) of the approximating coherentstate superposition, (b) pins showing the
positions and the absolute values of the coefficients of the constituent coherent states.
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Conclusion

We have considered the optimal approximation of certain quantum states with the superposition of a
finite number of coherent states on an ellipse and on a lattice in phase space. All the coherent-state
superpositions we have considered are feasible in current experiments. We have optimized numerically
the parameters of the chosen geometry and the coefficients of the coherent states via a genetic algorithm,
in order to obtain the best feasible approximation.

First, we placed the coherent states equidistantly in their phase on an ellipse. For squeezed number
states in a certain parameter range, the elliptical approximation outperforms the one on a line.

Next we have considered a 3× 3 equidistant lattice around the origin of phase space. A relatively large
set of states, including special numberstate superpositions, appear to be better approximated in this
geometry than with a superposition on a circle.
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