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Abstract
We consider the optimal approximation of certain quantum states of a harmonic oscillator with
the superposition of a finite number of coherent states in phase space placed either on an ellipse
or on a certain lattice. These scenarios are currently experimentally feasible. The parameters of
the ellipse and the lattice and the coefficients of the constituent coherent states are optimized
numerically, via a genetic algorithm, in order to obtain the best approximation. It is found that
for certain quantum states the obtained approximation is better than the ones known from the
literature thus far.
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1. Introduction

There has been a persistent interest in the construction and the
production of nonclassical states of a harmonic oscillator
system due to their potential applications in quantum optics
and quantum information processing [1, 2]. Special attention
has been devoted to the idea of quantum state engineering,
that is, to the preparation of arbitrary quantum states in the
same experimental scheme [3]. Several methods have been
developed for generating arbitrary superpositions of photon
number states of the electromagnetic field in a cavity [4–7].
Experimental schemes have been proposed for the conditional
preparation of arbitrary finite superposition of Fock states in a
single mode of a traveling-wave optical field by performing
alternately coherent quantum-state displacement and photon
addition [8, 9] or subtraction [10].

Another efficient method of quantum state engineering is
to construct nonclassical states via discrete coherent-state
superpositions. It has been shown that superpositions of even
a small number of coherent states placed along a straight line
or on a circle in phase space can approximate nonclassical
field states with a high degree of accuracy [11–13]. This
protocol exploits the effect of quantum interference between
the constituent coherent states. This phenomenon yields
nonclassical properties of the superposition of two coherent
states. Such superpositions were originally introduced in [14]

as even and odd coherent states. In the literature these states
are generally referred to as Schrödinger cat states due to their
correspondence to Schrödinger’s famous cat paradox. Prop-
erties of such states have been widely discussed in the lit-
erature [1, 2, 15–18], and experimental schemes have been
developed for their production in different physical systems
[19–35]. Several methods have also been proposed for gen-
erating discrete coherent-state superpositions on a circle or
along a line for electromagnetic field in cavities [13, 36–42]
and for the center of mass motion of a trapped ion [43, 44].

A method for producing coherent-state superpositions in
traveling-wave optics has been recently proposed [45]. The
experimental scheme contains only beam splitters and
homodyne detectors and it is capable of producing coherent-
state superpositions along the real axis and on an equidistant
lattice in phase space. This scheme is based on an apparatus
developed previously for generating Schrödinger cat states
[28, 29]. The construction of squeezed states and number
states by coherent-state superpositions on truncated von
Neumann lattices was also considered in [46, 47]. From the
results of these papers one can conclude that for the con-
sidered states the accuracy of the approximation achievable
using the latter lattices is below that of the superposition of
the same number of coherent states placed on a circle or along
a line, even after optimization by the method of [46]. An
experimental scheme for producing coherent-state
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superpositions on a truncated von Neumann lattice has been
developed for center of mass motion of a trapped ion [48].
Elliptical states have been introduced, too, which are coher-
ent-state superpositions on an ellipse in phase space [49]. An
experimental scheme was proposed in the latter reference for
generating elliptical states with constant coefficients for the
motion of the center of mass of a trapped ion. Nonclassical
properties of such states were also analyzed.

Inspired by these results, now we consider quantum state
engineering on an ellipse and on a specific lattice in phase
space. We show, by using an efficient numerical optimization
method, that the superpositions of a small number of coherent
states in these geometries can approximate certain non-
classical states with a high accuracy. For certain states and
parameter ranges the approximation is better than the corre-
sponding one on a circle or along a line.

The paper is organized as follows. In section 2 we
summarize the results on approximation of nonclassical states
with coherent-state superpositions on a circle or along a
straight line in phase space. In section 3 the construction of
squeezed number states by coherent-state superpositions on
an ellipse is considered. We present our results on approx-
imating nonclassical states by coherent-state superpositions
on a lattice in section 4. Conclusions are given in section 5.

2. Coherent-state superpositions on a circle and
along a straight line

In this section we briefly summarize the results known from
the literature related to the construction of nonclassical states
by coherent-state superpositions along a straight line and on a
circle in phase space. A systematic method was developed in
[13] for obtaining optimized superpositions from the one-
dimensional representation [50–56] of the desired state. In
this quantum state engineering protocol a given quantum state
Ψ∣ 〉 is approximated either by an equidistant superposition

c x (1)N
k

N

k kline
1

(line)∑ψ =
=

of coherent states xk∣ 〉 distributed at distances d along the real
axis of phase space, or by a superposition

c Re (2)N
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N
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(circle) i k∑ψ = ϕ

=

of coherent states Rei k∣ 〉ϕ equally distributed on an arc of a
circle in phase space with radius R. In (1) and (2)  is a
normalization constant.

The positions of the coherent states in these super-
positions are defined by the following equations:
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where x0 and 0ϕ determine the center of the distribution, Δϕ is
the phase difference between two adjacent coherent states.

In the superpositions in (1) and (2), the coefficients ck are
derived from the continuous distribution functions of the one-
dimensional coherent-state representations of the state Ψ∣ 〉
along the real axis
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and on a circle
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respectively, by the following expressions
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The optimal values of the distances d and phase differences
Δϕ can be determined numerically by minimizing the misfit
parameter

1 . (9)N

2
ϵ ψ Ψ= −

The quantity N
2ψ Ψ∣〈 ∣ 〉∣ is the fidelity between the approx-

imating coherent-state superposition Nψ∣ 〉 and the target
quantum state Ψ∣ 〉.

Obviously, the described method for deriving the
approximating coherent-state superpositions can only be used
if a well-behaved one-dimensional coherent-state representa-
tion of the quantum state Ψ∣ 〉 exists. For example, the con-
dition of the existence of an appropriate weight function
F ( )R ϕ on a circle with radius R reads [50]
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R
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where the numbers cn are the coefficients in the photon
number expansion

c n . (11)
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We note that for a state with an infinite number of Fock-state
coefficients not fulfilling (10) an approximate weight function
F ( )R

appr ϕ can be derived by appropriate truncation of the
expansion of (11). As a consequence, discrete coherent-state
superpositions approximating a nonclassical state can always
be constructed on a circle in phase space.

Using this procedure, approximating discrete coherent-
state superpositions were determined in [13] for various
nonclassical states, including displaced squeezed number
states, squeezed coherent states, binomial states, Hermite-
polynomial states, and amplitude squeezed states. In [57]
coherent-state superpositions approximating phase-optimized
states on the real axis of phase space were derived by a dif-
ferent numerical method. This method varies not only the
coefficients but also the positions of the coherent states in
phase space. Though there is no one-dimensional straight-line
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coherent-state representation known for these states, the
numerically obtained superpositions of high accuracy consist
of a few coherent states distributed nearly equidistantly. This
experience can be explained by the properties of the quantum
interference between the constituent coherent states. The
interference phenomenon arises typically at a certain range of
distance between coherent states. In view of this, the choice of
the equidistant states in the superpositions (1) and (2) seems
to be reasonable. We note that the accuracy of the approx-
imation can be generally increased by increasing the number
of constituent states in the superpositions.

From these results one can conclude that any state can be
approximated by discrete coherent-state superpositions. Even
expecting a given accuracy, different superpositions of var-
ious geometries can approximate the same nonclassical state.
In general, small number of constituent states are required if
the geometry of their positions fits well to the state to be
approximated. For example, states exhibiting circular sym-
metry in the Wigner function such as photon number states or
amplitude squeezed states can be effectively approximated by
superpositions on a circle. The optimal value of the radius of
the circle fits to the value of the photon number [13] when the
constituent coherent states in the superposition are located
under the central part of the Wigner function of the target
state. On the other hand, effective approximation of quad-
rature squeezed states can be realized by superpositions along
a line. These facts also motivate our considerations of
coherent-state superpositions on an ellipse for approximating
squeezed number states in the next section.

As we have already mentioned in the introduction, sev-
eral schemes have been proposed in the literature for produ-
cing coherent-state superpositions approximating quantum
states along a line and on a circle in cavities [13, 36–42] and
trapped ion systems [43, 44]. The experimental realization of
these quantum state engineering protocols seems easier than
that of the protocols based on the realization of the number-
state expansions [4–7] of the target states. The reason is that
the complexity of the experiment, for example, the number of
atoms sent through the cavity or the number of the applied
laser pulses, is proportional to the number of terms in the
number-state expansion of the state [5] or the number of
coherent states in the approximating superposition
[13, 43, 44]. According to the results we have summarized
here thus far, for certain quantum states at a given accuracy,
the number of the required coherent states of the approx-
imation can be less than that of the number states.

3. Coherent-state superpositions on an ellipse

Elliptical states has been introduced in [49]. An experimental
scheme is also proposed in this reference for generating
equidistant coherent-state superpositions with constant coef-
ficients on an ellipse for the motion of the center of mass of a
trapped ion. This scheme can probably be generalized for
producing arbitrary superpositions.

Elliptical states can be defined as coherent-state super-
positions on an ellipse in phase space
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k

N

k kellipse
1

(ellipse)∑ψ α=
=

where

( )r exp i , (13)k k kα ϕ=

k

N

2
, (14)k 0ϕ ϕ π= +

r
a b

cos sin
, (15)k

k k
2

2

2

2

1 2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ϕ ϕ
= +

−

where a and b are arbitrary real numbers. Here the constituent
coherent states are placed equidistantly in their phase kϕ .
Nonclassical properties of such states were analyzed only for
states with constant coefficients ck = 1 [49].

Here we consider the construction of quantum states via
elliptical states. Inspired by the considerations in the previous
section, we choose displaced squeezed number states for
demonstrating the idea of approximating quantum states by
discrete coherent-state superpositions on an ellipse.

Displaced squeezed states are defined as
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where D Zˆ ( ) is the displacement operator
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while Ŝ ( )ζ is the squeezing operator

S a a rˆ ( ) exp
1

2
*ˆ

1

2
ˆ , e . (18)2 †2 i⎜ ⎟⎛

⎝
⎞
⎠ζ ζ ζ ζ= − = θ

In the above definitions â and â† are the annihilation and
creation operators, respectively, Z is the amount of displace-
ment in phase space, and ζ is the complex squeezing
parameter.

The Wigner function for a squeezed number state reads
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where x( )n is the Laguerre polynomial of degree n:
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In figure 1 the Wigner function W( )α of the state
3, 0.5, 0∣ 〉 is presented. It can be seen that the Wigner func-
tion of the squeezed number states has an elliptic shape. We
note that for the displaced number state the one-dimensional
coherent-state distribution function is also known, so
approximating discrete coherent-state superpositions along
the real axis can be easily obtained using the method
described in section 2.
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Our task is to find the set of coefficients ck
(ellipse) in (12)

and parameters a, b of the ellipse in (15), which minimize the
misfit parameter in (9). Since it is not a convex function of the
parameters, an algorithm supporting non-convex optimization
has to be chosen. In our calculations we have chosen to use a
genetic algorithm [58] for solving the optimization problem,
as its applicability is quite general and we found it effective in
the present case. In order to eliminate the uncertainty of the
method due to its stochastic nature, we have performed
multiple runs and we chose the parameter set for which the
value of the misfit parameter (9) was minimal. Besides, at a
given accuracy, various solutions with slightly different
parameters can be found for a given target state. This
degeneracy of the optimum can be foreseen from the general
properties of the discrete coherent-state superposition descri-
bed in the last paragraph of section 2.

In tables 1–4 we present our results on approximating
displaced squeezed number states on an ellipse with 12
coherent states for various values of the photon number, the
squeezing parameter and the amount of displacement. We
show the misfit (ellipse)ϵ defined in (9) and the ellipse para-
meters aopt and bopt introduced in (15) corresponding to the
optimum. For comparison, the tables also show the misfit

(line)ϵ and the optimal distance dopt for approximating dis-
placed squeezed number states along the real axis of phase

space with 12 equidistant coherent states. We note that we
determined the coefficients ck

(line) and the optimal distances
dopt of the constituent coherent states in the line super-
positions by using the same genetic algorithm. This method
may lead to a better approximation than the one described in
section 2.

In table 1 our results are presented for a fixed real
squeezing parameter 0.5ζ = and no displacement, while the
photon number n is changed. It can be seen that increasing the
photon number leads to the growth of the size of the optimal

Figure 1. Wigner function W ( )SN α for the squeezed number state
3, 0.5, 0∣ 〉.

Table 1. The minimal misfits (ellipse)ϵ and (line)ϵ of the approximation
of the squeezed number states on an ellipse and along a line with 12
coherent states and the optimal parameters aopt , bopt of the ellipse
and dopt of the line for various photon numbers and for a constant
squeezing parameter 0.5ζ = .

State (ellipse)ϵ aopt bopt (line)ϵ dopt

0, 0.5, 0∣ 〉 6 × 10−4 1.26 0.17 1.4 10 5× − 0.27
3, 0.5, 0∣ 〉 0.001 2.63 0.97 0.0015 0.47
5, 0.5, 0∣ 〉 0.006 3.39 1.44 0.018 0.6
7, 0.5, 0∣ 〉 0.0172 4.09 1.54 0.052 0.74

Table 2. The misfits (ellipse)ϵ and (line)ϵ of the approximation of the
squeezed number states on an ellipse and along a line with 12
coherent states and the optimal parameters aopt , bopt of the ellipse
and dopt of the line for various squeezing parameters and for a
constant photon number n = 3.

State (ellipse)ϵ aopt bopt (line)ϵ dopt

3, 0.1, 0∣ 〉 5 10 5× − 1.48 1.56 0.0099 0.3
3, 0.3, 0∣ 〉 2.7 10 4× − 2.07 0.89 0.0035 0.41
3, 0.5, 0∣ 〉 0.001 2.63 0.97 0.0015 0.53
3, 0.7, 0∣ 〉 0.011 3.12 0.94 0.0033 0.71
3, 0.8, 0∣ 〉 0.017 3.55 0.99 0.0028 0.76
3, 1.2, 0∣ 〉 0.12 4.91 0.75 0.0086 1.16

Table 3. The misfits (ellipse)ϵ and (line)ϵ of the approximation of the
displaced squeezed number states on an ellipse and along a line with
12 coherent states and the optimal parameters aopt, bopt of the ellipse
and dopt of the line for a constant squeezing parameter 0.5ζ = , a
constant photon number n = 3, and for various displacements Z.

State (ellipse)ϵ aopt bopt (line)ϵ dopt

3, 0.5, 0.2i∣ 〉 0.0041 2.62 1 0.0078 0.46
3, 0.5, 0.3i∣ 〉 0.0035 2.64 1.33 0.0046 0.67
3, 0.5, 0.5i∣ 〉 0.009 2.49 1.6 0.028 0.7
3, 0.5, 0.8i∣ 〉 0.038 2.37 1.73 0.12 0.62
3, 0.5, i∣ 〉 0.088 2.58 1.72 0.29 0.53
3, 0.5, 1.5i∣ 〉 0.026 2.87 1.94 0.47 0.5
3, 0.5, 1.8i∣ 〉 0.068 2.63 2.52 0.56 0.55
3, 0.5, 2i∣ 〉 0.12 2.5 3.41 0.65 0.24

Table 4. The misfits (ellipse)ϵ and (line)ϵ of the approximation of the
squeezed number states on an ellipse and along a line with 12
coherent states and the optimal parameters aopt , bopt of the ellipse
and dopt of the line for various phase θ and a constant magnitude
r = 0.5 of squeezing and a constant photon number n = 3.

State (ellipse)ϵ aopt bopt (line)ϵ dopt

3, 0.5, 0∣ 〉 0.001 2.63 0.97 0.0015 0.53
3, 0.5 exp (i 12), 0π∣ 〉 0.006 2.77 1.33 0.0018 0.52
3, 0.5 exp (i 6), 0π∣ 〉 0.017 2.62 1.61 0.012 0.47
3, 0.5 exp (i 4), 0π∣ 〉 0.03 2.37 1.6 0.09 0.46
3, 0.5 exp (i 2), 0π∣ 〉 0.022 2.06 2.01 0.29 0.4
3, 0.5 exp (i5 6), 0π∣ 〉 0.0173 1.64 2.6 0.59 0.29
3, 0.5 exp (i11 12), 0π∣ 〉 0.0067 1.42 2.66 0.55 0.24
3, 0.5 exp (i ), 0π∣ 〉 0.0011 0.97 2.59 0.6 0.28
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ellipse while the accuracy of the approximation ϵ slightly
decreases but remains rather high for all the states considered.
According to the table the approximation on an ellipse proves
to be better than approximation along a line except for the
squeezed vacuum state 0, 0.5, 0∣ 〉. This effect confirms the
intuition described at the end of the previous section that the
best performance can be achieved by fitting the location of the
constituent coherent states in the superposition to the geo-
metry and the size of the Wigner function of the target state.
figure 2 shows the pins representing the positions and the
absolute values of the coefficients of the N = 12 constituent
coherent states in the coherent-state superposition approx-
imating the squeezed number state 5, 0.5, 0∣ 〉 on an ellipse.
The Wigner functionW( )α of the approximating superposition
is also shown. This function practically coincides with the
Wigner function of the target state, only some imperfections

can be seen appearing in the form of small fluctuations due to
quantum interference.

Table 2 contains results for constant photon number n = 3
without displacement and for various real squeezing para-
meters ζ. It can be seen from the table that for stronger
squeezing the optimal ellipse becomes more and more elon-
gated, that is, the ratio a b of the parameters of the ellipse
increases, in the same way as the Wigner function of the state
becomes more elongated. The data show that the super-
position on an ellipse proves to be better only for smaller
squeezing parameters. For a stronger squeezing when the
Wigner function of the state is dominantly elongated along
the real axis, superpositions along the appropriate line per-
form better.

The results for displaced squeezed number states are
shown in table 3. In this case both the photon number n = 3
and the squeezing parameter 0.5ζ = are kept constant, while
the amount of displacement Z is changed. According to the
table, increasing the displacement results generally in a
decrease of the accuracy, but exceptions can occur at certain
values of the displacement. Though the tendency for
approximating along a line is the same, the approximation is
much less accurate. The data also show that the optimal
ellipse tends to deform towards the displacement ensuring the
interfering coherent states to be close to the area of the
Wigner function of the displaced squeezed target state.
Interestingly, the optimal length aopt of the major axis of the
ellipse does not change monotonously. From figure 3 it can be
seen that for a larger displacement Z = 1.5i only superposed
coherent states in the upper half of phase space have non-
negligible weights.

Finally, table 4 presents results on squeezed number
states with various phases θ but constant magnitude r = 0.5 of
squeezing, keeping the photon number n = 3 fixed. From the
data it can be seen that the deformation of the ellipse changes
in accordance with the increase of the phase of squeezing.

Figure 2. Squeezed number state 5, 0.5, 0∣ 〉 approximated by N = 12
coherent states on a ellipse (a) Wigner function W( )α of the
approximating coherent-state superposition, (b) pins showing the
positions and the absolute values of the coefficients of the
constituent coherent states.

Figure 3. Pins showing the positions and the absolute values of the
coefficients of the constituent coherent states for approximating
squeezed displaced number state 3, 0.5, 1.5i∣ 〉 with N = 9 coherent
states on a lattice.
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The originally minor axis b of the ellipse is growing, for
phases larger than 2π the ellipse elongates in the direction of
the imaginary axis of phase space. The change in accuracy is
not monotonous, the accuracy is the highest for squeezing
corresponding to the orientation of the ellipse, that is, for

0θ = and θ π= . For larger phases of squeezing ( 6θ π> )
approximation on an ellipse proves to be better than the one
along a line.

4. Discrete coherent-state superpositions on a
lattice in phase space

Recently, it has been shown that discrete coherent-state
superpositions with variable coefficients on a lattice in phase
space can be produced in traveling-wave optics using only
beam splitters and homodyne measurements [45]. In this
section we consider the approximation of nonclassical states
by such experimentally realizable superpositions on a lattice
in phase space.

Accordingly, let us consider the superposition of 9
coherent states

c l d k d· · i , (21)
l k

k l9 lattice
1

1

1

1

,
(lattice) ∑ ∑ψ = +

=− =−

on an equidistant lattice centered around the origin in phase
space. In this equation d is the distance between adjacent
elements of the lattice and  is a normalization constant.

Again, we have used the same genetic algorithm as in the
previous section for finding the optimal complex coefficients
ck l,

(lattice) and the distance d in (21). For the measure of the
accuracy of the approximation to be optimized, we use the
misfit parameter (lattice)ϵ introduced in (9). For comparison, we
also determined the misfit (circle)ϵ and the optimal radius Ropt

for equidistant coherent-state superpositions consisting 9
coherent states on a circle and approximating the given target
state.

First we examine the problem of constructing number
states by lattice and circle superpositions. The results are
presented in table 5. It can be seen that all the considered
number states (n 8⩽ ) can be approximated with high accu-
racy on both formations. The data show that the approxima-
tion on a circle is better than the corresponding one on a
lattice for number states n∣ 〉 except for n = 1. The optimal
distance dopt and radius Ropt increases with n, that is, with the
growth of the area of the Wigner function of the target state.
In figure 4 we present the pins showing the positions and the
absolute values of the coefficients of the N = 9 constituent
coherent states in the coherent-state superposition approx-
imating the number state 3∣ 〉 on a lattice and the Wigner
function of the approximating state which is almost identical
with the one of the target state.

For the number states we have found that high accuracy
can be achieved not only at the optimal value of d but in a
range of distances around this value. This finding is shown in

figure 5 where the quantity F 1 (lattice)ϵ= − is presented as
a function of n. The quantity F is the absolute value of the

scalar product Nψ Ψ∣〈 ∣ 〉∣ sometimes used as a form of fidelity
in the literature. The figure shows that as the photon number n
increases, the width of the acceptable range of high accuracy
decreases. The lower limit of this range shifts to the direction

Figure 4. Number state 3∣ 〉 approximated by N = 9 coherent states on
a lattice (a) Wigner function W( )α of the approximating coherent-
state superposition, (b) pins showing the positions and the absolute
values of the coefficients of the constituent coherent states.

Table 5. The misfits (lattice)ϵ and (circle)ϵ of the approximation of the
number states on a lattice and on a circle with 9 coherent states and
the optimal distances dopt and radii Ropt for various photon
numbers n.

State (lattice)ϵ dopt
(circle)ϵ Ropt

1∣ 〉 2.2 10 6× − 0.22 3.4 10 6× − 0.23
2∣ 〉 3.1 10 4× − 0.39 5.6 10 6× − 0.3
3∣ 〉 3.5 10 4× − 0.5 3.9 10 5× − 0.55
4∣ 〉 5 × 10−4 0.73 1.3 10 5× − 0.8
5∣ 〉 0.004 1.03 2.8 10 4× − 1.25
6∣ 〉 0.0085 1.2 4.8 10 5× − 1.73
7∣ 〉 0.009 1.35 8.3 10 5× − 1.92
8∣ 〉 0.0097 1.5 2.1 10 4× − 1.99
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of larger distances while the upper limit shows a more com-
plicated behavior, but the accuracy of the approximation
relevantly decreases for distances d 1.7> .

Let us now consider the approximation of the number-
state superpositions

1

2
( 0 1 ), (22)01Ψ = +

1

3
( 0 1 2 ), (23)012Ψ = + +

1

2
( 0 1 2 3 ), (24)0123Ψ = + + +

1

5
( 0 1 2 3 4 ), (25)01234Ψ = + + + +

˜ 1

72
(7 0 3 1 2 2 3 3 4 ) (26)01234Ψ = + + + +

by lattice and circle coherent-state superpositions. In table 6
we present the misfits (lattice)ϵ and (circle)ϵ of the approxima-
tions and the optimal distances dopt of adjacent lattice ele-
ments, and the optimal radii Ropt. The table shows that the
accuracy of the approximation on a lattice is quite high for all
the considered superpositions, and it is always higher than the

accuracy of the approximation on a circle. Increasing the
number of constituent number states in the target state
including higher number states results in larger optimal dis-
tances dopt and optimal radii Ropt. We note that generation of
such types of superpositions can be important for some
quantum information protocols [59–61]. Several schemes
have been developed for producing such states in the litera-
ture [61–63]. From the results presented here it can be seen
that the construction and generation of these states by
coherent-state superposition on a lattice can be a rather
effective method.

In figure 6 we present the pins showing the positions and
the absolute values of the coefficients of the N = 9 constituent
coherent states in the coherent-state superposition approx-
imating the ( 0 1 2 )1

3
∣ 〉 + ∣ 〉 + ∣ 〉 state on a lattice and the

Wigner function of the approximating state. This function is

Figure 5. Precisions of approximating number states N∣ 〉 on a lattice
depending on the parameter d.

Table 6. The misfits (lattice)ϵ and (circle)ϵ of the approximation of
number-state superpositions on a lattice and on a circle with 9
coherent states and the optimal distances dopt and radii Ropt for
increasing number of superposed states.

State (lattice)ϵ dopt
(circle)ϵ Ropt

01Ψ 2 10 6× − 0.257 2.2 10 5× − 0.54

012Ψ 1.8 10 5× − 0.53 4 × 10−4 0.9

0123Ψ 6.6 10 5× − 0.79 0.0016 1.17

01234Ψ 0.0017 1.37 0.0061 1.32

0̃1234Ψ 0.0016 1.33 0.0035 1.15

Figure 6. Number-state superposition ( 0 1 2 )1

3
∣ 〉 + ∣ 〉 + ∣ 〉 approxi-

mated by N = 9 coherent states on a lattice (a) Wigner function W( )α
of the approximating coherent-state superposition, (b) pins showing
the positions and the absolute values of the coefficients of the
constituent coherent states.
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practically perfect showing the high accuracy of the
approximation.

Next we consider the approximation of squeezed number
states. Table 7 presents the misfits (lattice)ϵ and (circle)ϵ of the
approximations, the optimal distances dopt of adjacent lattice
elements, and radii Ropt for various phases θ and for a con-
stant magnitude r = 0.5 of squeezing and a constant photon
number n = 1. The data show that the accuracy of the
approximation is generally good but really high around

0,θ = θ π= , and 2θ π= with the range of 12Δθ π∣ ∣ ≲ . In
this case the state is elongated in the direction of the real axis,
the imaginary axis, and the diagonal of the lattice, respec-
tively. In these cases the approximation on a lattice is better
than the one on a circle. Though there is no general rule in the
change of the optimal distance dopt and radius Ropt, one can
observe that the optimal distances are smaller for the states
with phases of squeezing around 2π ( 2 6θ π π= ± ). In

figure 7 we show the pins representing the positions and the
absolute values of the coefficients of the constituent coherent
states for squeezed number state 1, 0.5 exp (i 2), 0π∣ 〉 with
N = 9 coherent states on a lattice.

Finally, let us consider amplitude-squeezed states

u R

u R

( , , )

exp
1

2
i e d (27)

A

2 2 i⎜ ⎟⎛
⎝

⎞
⎠

 ∫Ψ δ

ϕ δ ϕ ϕ

=

× − −

π

π

ϕ

−

defined by Gaussian continuous coherent-state superpositions
in phase space.  is a normalization constant.

For calculational purposes it is convenient to use the
number-state representation of the states:

u R C n( , , ) , (28)A

n

n

0

∑Ψ δ =
=

∞

where

C n u R
R

u n

u

u
( , , )

2

!
exp

( )

2
. (29)n A

n 2

2

⎡
⎣⎢

⎤
⎦⎥Ψ δ π δ= = − −

These states tend to the coherent state R in the limit u → ∞
and yield the photon number state δ when δ is a non-negative
integer in the limit u 0→ , while R2δ = , the mean values of
the photon number for these limiting states are equal.

In table 8 the misfits (lattice)ϵ and (circle)ϵ of the approx-
imations of various amplitude-squeezed states on a lattice and
on a circle and the optimal parameters dopt and Ropt are pre-
sented. The table shows that the accuracy of the approxima-
tion on both formations is high for all the considered states.
The accuracy on a circle is always higher than on a lattice
except for the state (2, 4, 2)AΨ∣ 〉. The optimal distance dopt of
the lattice is growing with increasing values of the para-
meter u.

In figure 8 we present the pins showing the positions and
the absolute values of the coefficients of the N = 9 constituent
coherent states in the coherent-state superposition approx-
imating the amplitude-squeezed state (1, 4, 2)Aψ∣ 〉 on a

Figure 7. Pins showing the positions and the absolute values of the
coefficients of the constituent coherent states for squeezed number
state 1, 0.5 exp (i 2), 0π∣ 〉 with N = 9 coherent states on a lattice.

Table 7. The misfits (lattice)ϵ and (circle)ϵ of the approximation of
squeezed number states on a lattice and on a circle with 9 coherent
states and the optimal distances dopt and radii Ropt for various phase
θ and a constant magnitude r = 0.5 of squeezing and a constant
photon number n = 1.

State (lattice)ϵ dopt
(circle)ϵ Ropt

1, 0.5, 0∣ 〉 0.0017 1.44 0.0019 1.53
1, 0.5 exp (i 12), 0π∣ 〉 0.0069 1.34 0.0034 1.53
1, 0.5 exp (i 6), 0π∣ 〉 0.008 1.15 0.0012 1.63
1, 0.5 exp (i 3), 0π∣ 〉 0.0065 1.14 0.004 1.49
1, 0.5 exp (i5 12), 0π∣ 〉 0.0025 1.13 0.0049 1.44
1, 0.5 exp (i 2), 0π∣ 〉 0.0033 1.04 0.0042 1.39
1, 0.5 exp (i7 12), 0π∣ 〉 0.0032 1.07 0.0063 1.43
1, 0.5 exp (i2 3), 0π∣ 〉 0.006 1.13 0.0044 1.42
1, 0.5 exp (i5 6), 0π∣ 〉 0.0074 1.1 0.005 1.51
1, 0.5 exp (i11 12), 0π∣ 〉 0.007 1.35 0.0032 1.54
1, 0.5 exp (i ), 0π∣ 〉 0.0018 1.44 0.0029 1.48

Table 8. The misfits (lattice)ϵ and (circle)ϵ of the approximation of
amplitude-squeezed states on a lattice and on a circle with 9 coherent
states and the optimal distances dopt and radii Ropt for various values
of u and fixed parameters 4δ = and R = 2.

State (lattice)ϵ dopt
(circle)ϵ Ropt

(0.5, 4, 2)AΨ∣ 〉 0.003 0.9 5 10 5× − 1.65
(1, 4, 2)AΨ∣ 〉 0.0048 0.98 2 × 10−4 1.74
(1.5, 4, 2)AΨ∣ 〉 0.0066 1.15 4 × 10−4 1.79
(1.6, 4, 2)AΨ∣ 〉 0.0093 1.16 2.2 10 4× − 1.72
(1.7, 4, 2)AΨ∣ 〉 0.0058 1.16 9 × 10−4 1.87
(1.9, 4, 2)AΨ∣ 〉 0.0142 1.51 0.01 1.84
(2, 4, 2)AΨ∣ 〉 0.0105 1.41 0.012 1.86
(3, 4, 2)AΨ∣ 〉 0.011 1.9 0.0013 1.78
(5, 4, 2)AΨ∣ 〉 0.0031 1.95 7 × 10−4 1.93
(10, 4, 2)AΨ∣ 〉 3 × 10−4 1.99 1.3 10 4× − 1.98
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lattice and the Wigner function of the approximating state. In
this case the Wigner function is also practically perfect.

From these results one can conclude that lattice coherent-
state superpositions are universal for approximating non-
classical states of harmonic oscillator systems. The accuracy
of the approximation is high for several quantum states.
Higher accuracy can be obtained by circle superpositions only
for quantum states having circular symmetry in the Wigner
function [13].

Finally, we compare the presented quantum state engi-
neering protocol with the ones based on the number-state
expansion of the target state in traveling-wave optics [8–10],
with a special attention to the aspect of experimental realiz-
ability. An experimental scheme in this area generally con-
tains beam splitters and photon number or homodyne
detectors. All the schemes are probabilistic, the target state is

prepared conditionally depending on the results of the mea-
surements. The fidelity of the prepared state depends on the
perfectness of the input states of the scheme, the detector
efficiencies, and the amount of unavoidable photon losses in
the system. Obviously, the effects of imperfections and losses
are generally proportional to the number of construction
elements, e.g. the number of detectors in the experimental
setup, or the number of special input states.

The experimental scheme in [45] which has inspired the
analysis of quantum state engineering via coherent-state
superpositions on a lattice presented in this section contains
only three beam splitters and three homodyne measurements
independently of the quantum state to be engineered. As the
number of elements in the experimental schemes for quantum
state engineering based on number-state expansion is pro-
portional to the number of terms considered in the expansion,
the presented coherent-state superposition based method can
be generally advantageous for quantum states containing
several terms in their number-state expansion.

We note that the effects of experimental imperfections
have been analyzed in the literature for various schemes
developed for generating Schrödinger cat states in traveling-
wave optics [25, 32, 64–66]. Such schemes have similar
structure to those capable of producing general states. For
example, the experimental scheme for generating a general
quantum state with a finite number-state expansion using
photon subtraction can be considered as a generalization of
the scheme developed for producing Schrödinger cat states by
the same process. These analyses show that the change in the
fidelity characterizing the performance of the engineering due
to experimental imperfections strongly depends on the spe-
cifics of the given scheme and even on the properties of the
target state. Generally, experimental schemes with homodyne
detections might have some advantage because this type of
measurement can be performed with much higher efficiency
than photon counting measurements [65, 66]. This property
can yield an additional benefit for coherent-state super-
position based quantum engineering protocols because using
homodyne detections can be plausible in these schemes and it
also holds for the experimental scheme in [45]. We hope that
the presented results will motivate further research on
developing experimental schemes capable of producing
coherent-state superpositions approximating nonclassical
states in traveling-wave optics.

5. Conclusions

We have considered the optimal approximation of certain
quantum states of a harmonic oscillator with the superposition
of a finite number of coherent states on an ellipse and on a
lattice in phase space. All the coherent-state superpositions
we have considered are feasible in current experiments. We
have optimized numerically the parameters of the chosen
geometry and the coefficients of the coherent states via a
genetic algorithm, in order to obtain the best feasible
approximation.

Figure 8. Amplitude-squeezed state (1, 4, 2)AΨ∣ 〉 approximated by
N = 9 coherent states on a lattice (a) Wigner function W( )α of the
approximating coherent-state superposition, (b) pins showing the
positions and the absolute values of the coefficients of the
constituent coherent states.
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First, we placed the coherent states equidistantly in their
phase on an ellipse. As the ellipse fits to the shape of the
Wigner function of certain states, we have expected that for
such states we can obtain an approximation superior in quality
to the one based on the one-dimensional coherent-state
representation of the state, that is, constructed from states
along a line in phase space. We have found this intuition to be
appropriate. In particular, for squeezed number states in a
certain parameter range, the elliptical approximation outper-
forms the one on a line.

Next we have considered a 3 × 3 equidistant lattice
around the origin of phase space. These are the kinds of
superpositions which seem to be feasible in traveling-wave
optical experiments. A relatively large set of states, including
special number-state superpositions, appear to be better
approximated in this geometry than with a superposition on a
circle.
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